Characterization of structure and function of the mouse retina using pattern electroretinography, pupil light reflex, and optical coherence tomography

Kabhilan Mohan,*† Matthew M. Harper,* Helga Kecova,* Eun-Ah Ye,+ Tatjana Lazic,* Donald S. Sakaguchi,*† Randy H. Kardon*§ and Sinisa D. Grozdanic†

†Iowa City Department of Veterans Affairs Center for Prevention and Treatment of Vision Loss, Iowa City, IA 52246-2209, USA; †Department of Biomedical Sciences, Iowa State University, Ames, IA, USA; ‡Genetics Development and Cell Biology, Iowa State University, Ames, IA, USA; §Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA; and †Eastern Iowa Veterinary Specialty Center, Cedar Rapids, IA 52404, USA

Address communications to:
M. Harper and S. Grozdanic
Tel.: (319) 339-7151
Fax: (319) 887-4993
e-mails: matthew.harper@va.gov, sgrozdan@gmail.com

Abstract

Objective To perform in vivo analysis of retinal functional and structural parameters in healthy mouse eyes.

Animal Studied Adult C57BL/6 male mice (n = 37).

Procedures Retinal function was evaluated using pattern electroretinography (pERG) and the chromatic pupil light reflex (cPLR). Structural properties of the retina and nerve fiber layer (NFL) were evaluated using spectral-domain optical coherence tomography (SD-OCT).

Results The average pERG amplitudes were found to be 11.2 ± 0.7 μV (P50-N95, mean ± SEM), with an implicit time for P50-N95 interval of 90.4 ± 5.4 ms. Total retinal thickness was 229.5 ± 1.7 μm (mean ± SEM) in the area centralis region. The thickness of the retinal nerve fiber layer (mean ± SEM) using a circular peripapillary retinal scan centered on the optic nerve was 46.7 ± 0.9 μm (temporal), 46.1 ± 0.9 μm (superior), 45.8 ± 0.9 μm (nasal), and 48.4 ± 1 μm (inferior). The baseline pupil diameter was 2.1 ± 0.05 mm in darkness, and 1.1 ± 0.05 and 0.56 ± 0.03 mm after stimulation with red (630 nm, luminance 200 kcd/m²) or blue (480 nm, luminance 200 kcd/m²) light illumination, respectively.

Conclusions Pattern electroretinography, cPLR and SD-OCT analysis are reproducible techniques, which can provide important information about retinal and optic nerve function and structure in mice.

Key Words: mouse, OCT, pERG, pupil, retina

INTRODUCTION

Noninvasive functional and structural assays such as electroretinography (ERG) and optical coherence tomography (OCT) can be utilized in animal models to obtain objective information regarding the status of the retina and optic nerve in vivo.1-3 These techniques allow repeated analysis without the need to euthanize the animal and can be effectively used for longitudinal evaluation of disease progression or treatment efficacy. The function of retinal ganglion cells (RGCs) in rodents can be measured by recording the amplitude and latency of the pattern-evoked electroretinogram (pERG).4-12 The pERG response is a result of RGCs depolarization13,14 with minimal glial cell contributions,15 which can be abolished by optic nerve transection16,17 or pharmacological blockade targeting RGC action potential activity.13 Considering that the electrical response originates from RGCs, pERG has been used to evaluate RGC damage associated with glaucoma and ocular hypertension in human patients18-20 and in different animal models.21-23

The chromatic pupil light response (cPLR) analysis is a relatively new diagnostic technique, which may provide information about the quality of rod-cone activity, rod-cone-mediated electrical signal transmission to RGCs and characteristics of an intrinsically photosensitive subpopulation of RGCs (ipRGCs) containing the pigment
Recent reviews have excellently described the anatomy of ipRGCs and have summarized their role in mediating various functional properties. Stimulation of the retina with red (630 nm) light activates strictly rod-cone-mediated pupil light response, without activation of melanopsin-mediated responses. The degree of contribution of rods vs. cones depends on the state of retinal adaptation, the spectral sensitivity of the photoreceptors in the species being studied, and the brightness of the light. The rod-cone-mediated pupil response requires six components: (i) normal functioning rods and cones and their respective neurons in the inner nuclear layer, (ii) functional and well-organized dendritic arborization of ipRGCs to allow for a rod-cone generated electrical response to be transmitted to the ipRGCs that results in a generation of PLR responses, (iii) functional axons of ipRGCs to transmit the electrical information to the pretectal brain regions mediating the PLR and photopic blink responses, (iv) normal status of the pretectal olivary nucleus as a brain interneuron relay station for mediating the PLR to both Edinger-Westphal Nuclei, (v) intact pre- and post-ganglionic parasympathetic nerve pathway (oculomotor nerve) as an efferent pathway for mediation of PLR response, and (vi) an intact iris sphincter as an effector organ. Stimulation of the retina with bright blue (480 nm) light can activate both a rod-cone-mediated pupil response and a pupil response that is elicited by activation of the melanopsin in ipRGCs. However, the melanopsin activated pupil response is typically more sustained after light termination.

Pattern evoked electroretinography (pERG) was used to objectively measure the function of the RGCs by recording the amplitude and latency of the pERG waveform. Mice (n = 37) were anesthetized with 0.8 L/min O2, 0.4 L/min nitrous oxide, and 3.5% halothane. After anesthesia induction, the halothane concentration was decreased to 1.75% and mice were placed on a stainless steel recording table equipped with an internal circulating hot-water-based warming system (maintained at 39 °C) to maintain body temperature. The mice were positioned 20 cm from the stimulus monitor with their body angle tilted at 45 degrees to provide direct exposure of the stimulus to the visual axis of the recorded eye. The pupil was then dilated using 1% tropicamide solution (Tropicamide; Falcon Pharmaceuticals, Fort Worth, TX, USA). Pattern ERG responses were evoked using alternating, reversing, black and white vertical stimuli delivered on a monitor (Fig. 1a) with a Roland Consult ERG system (Roland Consult, Brandenburg, Germany). To record the pERG response, commercially available mouse corneal gold ring electrodes were used (S&V Technologies AG, Hennigsdorf, Germany). A reference needle electrode was placed at the base of the head, and a ground electrode was placed at the base of the tail to complete the circuit. Each animal was placed at the same fixed position in front of the monitor to prevent recording variability because of animal placement. Stimuli (9° radius visual angle subtended on full field pattern, 1 Hz temporal frequency, 0.05 cycles/deg spatial frequency, 97% contrast, 80 cd/m² monitor luminance, and 200 averaged signals with cut-off filter frequencies of 1–30 Hz) were delivered under photopic conditions, because slower stimulation rates in mesopic and scotopic conditions can elicit rod-mediated full field ERG responses, which can completely conceal the pERG response. Retinal pERG responses were evaluated by measuring the amplitudes (N35-P50 and P50-N95) and respective implicit times (Fig. 2). Implicit times were calculated for N35, P50, and N95 markers, in addition to the implicit time for N35-P50 and P50-N95 components. Seven mice were repeatedly recorded at 3, 11, and 15 months of age to determine whether aging has any effect on pERG amplitudes or implicit times.

Materials and Methods

Animals

All animal studies were conducted in accordance with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research and had the approval of the Iowa State University and VA Medical Center-Iowa City Institutional Animal Care and Use Committees. A total of 37 adult healthy male C57BL/6 mice (8–12 weeks of age, unless otherwise specified) were used for the purpose of this study.

Pattern electroretinography

Pattern-evoked electroretinography (pERG) was used to objectively measure the function of the RGCs by recording the amplitude and latency of the pERG waveform. Mice (n = 37) were anesthetized with 0.8 L/min O2, 0.4 L/min nitrous oxide, and 3.5% halothane. After anesthesia induction, the halothane concentration was decreased to 1.75% and mice were placed on a stainless steel recording table equipped with an internal circulating hot-water-based warming system (maintained at 39 °C) to maintain body temperature. The mice were positioned 20 cm from the stimulus monitor with their body angle tilted at 45 degrees to provide direct exposure of the stimulus to the visual axis of the recorded eye. The pupil was then dilated using 1% tropicamide solution (Tropicamide; Falcon Pharmaceuticals, Fort Worth, TX, USA). Pattern ERG responses were evoked using alternating, reversing, black and white vertical stimuli delivered on a monitor (Fig. 1a) with a Roland Consult ERG system (Roland Consult, Brandenburg, Germany). To record the pERG response, commercially available mouse corneal gold ring electrodes were used (S&V Technologies AG, Hennigsdorf, Germany). A reference needle electrode was placed at the base of the head, and a ground electrode was placed at the base of the tail to complete the circuit. Each animal was placed at the same fixed position in front of the monitor to prevent recording variability because of animal placement. Stimuli (9° radius visual angle subtended on full field pattern, 1 Hz temporal frequency, 0.05 cycles/deg spatial frequency, 97% contrast, 80 cd/m² monitor luminance, and 200 averaged signals with cut-off filter frequencies of 1–30 Hz) were delivered under photopic conditions, because slower stimulation rates in mesopic and scotopic conditions can elicit rod-mediated full field ERG responses, which can completely conceal the pERG response. Retinal pERG responses were evaluated by measuring the amplitudes (N35-P50 and P50-N95) and respective implicit times (Fig. 2). Implicit times were calculated for N35, P50, and N95 markers, in addition to the implicit time for N35-P50 and P50-N95 components. Seven mice were repeatedly recorded at 3, 11, and 15 months of age to determine whether aging has any effect on pERG amplitudes or implicit times.

© 2012 American College of Veterinary Ophthalmologists, Veterinary Ophthalmology, 15, 94–104
Chromatic pupillography

Chromatic pupil light reflex (PLR) was characterized in mice \((n = 8)\) using the A2000 COMPUTERIZED PUPILLOMETER (Neuroptics, San Clemente, CA, USA). The pupillometer consists of a sensitive pupil tracking software, which can be programmed to include various PLR recording routines and can provide the required red/blue light illumination. Red light of 630 nm was used to elicit strictly rod-cone-mediated PLR, as red light of 630 nm wavelength does not activate the intrinsic RGC photopigment melanopsin (Fig. 5). Blue light was used to elicit combined responses (rod-cone response + melanopsin intrinsic response). The wavelength of light emitted by the diodes was \(622 \pm 7\) nm for red light and \(463 \pm 13\) nm for blue light. Red and blue light stimuli were matched and had illuminance of 1 (0 log units), 4 (0.6 log units), 16 (1.2 log units), 63 (1.8 log units), 251 (2.4 log units), and 1000 (3 log units) lux. The maximum luminance measured at the position of the mouse eye using a photometer (J17LumaColor with luminance head model J1803; Tektronix, Wilsonville, OR, USA) was 3700 cd/m\(^2\) for the illuminance of 1000 lux. The pupil was illuminated for a period of 500 ms. All PLR testing routines were recorded in completely awake mouse without the use of general anesthetic or sedation. The mice were initially habituated to extensive handling with food rewards, in order for them to remain calm during recording. The experiments were then carried out under scotopic conditions with no background illumination from the pupillometer. Only the direct response of the pupil was observed following illumination with red/blue light stimulus. The pupil response was expressed as the percent contraction of the pupil from baseline.

To evaluate pupil responses with much higher light intensity, the PLR analysis was performed using a Melan-100 instrument (BioMed Vision Technologies, Ames, IA, USA). Similar as before, mice \((n = 11)\) were awake during the recording session and were held still using minimal manual restraint. Recording sessions in most animals lasted <1 min. The Melan-100 (BioMed Vision Technologies) has two powerful diode-based light sources with very narrow wavelength bands (630 ± 5 nm for red light, luminance \(200\) kcd/m\(^2\); 475 ± 5 nm for the blue light, luminance \(200\) kcd/m\(^2\)). Baseline pupil diameter measurements in mice were taken in darkness prior to illumination using an infrared video camera (Sony Handycam, Sony Corporation). Red light stimuli with 2-s duration were used to illuminate one eye of the mouse at a distance of 4 cm from the ocular surface, and direct pupil responses were recorded from the illuminated eye with the digital infrared camera. Prior to performing illumination with the blue light, pupils were allowed to completely dilate to the baseline diameter. Captured digital movies of pupil responses were analyzed using ADOBE PHOTOSHOP (v. 10.0.1; Adobe Systems, Inc., San Jose, CA, USA). Calibrated dot grid with dot sizes of 0.5, 1, 1.5, 2, and 3 mm in diameter were recorded with a camera from the 4 cm distance to calculate the regression equation so calculation of absolute pupil diameters from the recorded images could be performed.

Spectral-domain optical coherence tomography

Spectral-domain optical coherence tomography analysis was performed on anesthetized mice \((n = 22)\) using a Spectralis SD-OCT (Heidelberg Engineering, Vista, CA, USA) imaging system (Fig. 1b), coupled with a 25D lens for mouse ocular imaging (Heidelberg Engineering). Mice were anesthetized using 2.5% halothane and 100% oxygen mixture on a heating pad to maintain body temperature. Pupils were dilated using a 1% tropicamide solution. The cornea

Figure 1. (a) Pattern ERG recording in mice. The mouse is positioned on a heated table and placed 20 cm from the stimulating screen. The position of the table and eye orientation is carefully controlled to provide consistent placement of the animal eye in front of the stimulating monitor. (b) Optical coherence tomography (OCT) recording in mice. A special 25D lens is attached to the spectral-domain optical coherence tomography Spectralis system for performing OCT imaging in mouse eyes. Anesthetized mice are kept warm by placement on a heating pad for the duration of the recording.

Figure 2. Representative mouse pattern electroretinography tracing. Amplitudes are calculated for N35-P50 and P50-N95 intervals. It is considered that P50-N95 amplitude represents electrical activity of the retinal ganglion cell body and dendritic tree as a result of cell membrane depolarization.

© 2012 American College of Veterinary Ophthalmologists, *Veterinary Ophthalmology*, 15, 94–104
was moisturized with a saline solution, which was applied every 20–30 s. Circular scans around the optic nerve region were performed to quantify NFL thickness in the temporal, superior, nasal and inferior retinal quadrants. Circular scans were subsequently analyzed by including or excluding blood vessels from the RNFL thickness calculation, because blood vessels in rodents are almost completely embedded in the RNFL and are included in automated RNFL measurement routines by all commercially available systems. Linear scans were also performed in the superio-temporal region of the retina (area centralis) to evaluate total retinal thickness, thickness of the photoreceptor layer, and the RNFL thickness. Total of 25 linear scan lines were positioned in the superio-temporal retina. The most superior linear scan line was positioned 2.5–3 mm superior/1.5–2 mm temporal to the optic nerve head.

Statistical analysis
All statistical analyses were carried out using GRAPHPAD PRISM 5.0 (GraphPad software, San Diego, CA, USA). Paired t-tests, one-way ANOVA with Bonferroni’s post test, or repeated measures ANOVA with Bonferroni’s post test analysis were used as described in the text. Differences between groups were considered statistically significant for P < 0.05.

RESULTS
Pattern electroretinography
Average pERG amplitudes were 9 ± 0.6 µV (N35-P50, mean ± SEM) and 11.2 ± 0.7 µV (P50-N95, Fig. 3a).

Repeated measurement of pERG amplitudes in the same mice (four different recording sessions with a 7 day time interval between sessions for the same animal) revealed no significant inter-session difference compared with initial baseline recordings (P = 0.4, Repeated Measures ANOVA with Bonferroni post test analysis, Fig. 3b). The intraanimal variability across recording sessions was 1.9 ± 0.1 µV, with a 27.1 ± 2.7% coefficient of variation. Additionally, comparison of pERG amplitudes from the right and left eye revealed no significant interocular variability for the N35-P50 (P = 0.5, paired t-test) or P50-N95 amplitudes (P = 0.1, paired t-test). The pERG implicit times were 29.3 ± 1.8 ms (N35), 78.4 ± 3.5 ms (P50), and 168.9 ± 6.6 ms (N95), with durations of 49.2 ± 3.2 ms (N35-P50) and 90.4 ± 5.4 ms (P50-N95, Fig. 3c,d). To observe the effect of aging on the pERG response, recordings were conducted at 3, 11, and 15 months of age on the same animals (Fig. 4). The average N35-P50 amplitude was 4.3 ± 0.9, 6.6 ± 1.1, and 6.2 ± 1.4 µV at 3, 11, and 15 months of age, respectively (Fig. 4a). The average P50-N95 amplitude was 8.7 ± 1.3, 7.9 ± 0.5, and 7.9 ± 1 µV at 3, 11, and 15 months of age, respectively (Fig. 4b). The average N35-P50 latency was 42.1 ± 5.3, 58.5 ± 13.2, and 56.7 ± 9.3 ms at 3, 11, and 15 months of age, respectively (Fig. 4c). The average P50-N95 latency was 86 ± 14.3, 137.4 ± 18.1, and 123.9 ± 14.4 ms at 3, 11, and 15 months of age, respectively (Fig. 4d). No statistically significant difference was observed in both amplitudes and latencies at different ages (Repeated Measures ANOVA with Bonferroni post test analysis: N35-P50 amplitude, P = 0.3; P50-N95 amplitude, P = 0.1).
amplitude, \(P = 0.8 \); N35-P50 latency, \(P = 0.5 \); and P50-N95 latency, \(P = 0.1 \).

Chromatic pupillography

The visual pigments present in the mouse retina (Fig. 5) have been previously characterized,51–53, and their differential contribution to the pupil light reflex has been utilized to characterize the functional properties of different retinal neuronal cells.24 For red light stimulus, the pupil constriction was 3.3 ± 0.4% of baseline size (0 log units), 6.6 ± 0.7% (0.6 log units), 14 ± 1.2% (1.2 log units), 21.13 ± 1.8% (1.8 log units), 25.9 ± 1.1% (2.4 log units), and 31.6 ± 0.9% (3.0 log units), respectively (Fig. 6). However, blue light stimuli resulted in significantly greater pupil constriction for all tested light intensities (Fig. 6): 0 log units, 20.3 ± 1.8% (\(P < 0.0001 \), paired \(t \)-test); 0.6 log units, 30.3 ± 1.5% (\(P < 0.0001 \), paired \(t \)-test); 1.2 log units, 42.6 ± 1.7% (\(P < 0.0001 \), paired \(t \)-test); 1.8 log units, 51 ± 2% (\(P = 0.0001 \), paired \(t \)-test); 2.4 log units, 60.6 ± 2.9% (\(P < 0.0001 \), paired \(t \)-test); and 3.0 log units, 64 ± 3% (\(P < 0.0001 \), paired \(t \)-test).

Pupil constriction in response to light of different wavelengths was also characterized with the Melan-100 instrument (BioMed Vision Technologies) using higher light intensity (200 kcd/m\(^2\)). Baseline pupil diameters calculated prior to illumination in dim light conditions were 2.1 ± 0.05 mm (Fig. 7a,d). The pupil diameter after constriction in response to red (630 nm) light stimulation was 1.1 ± 0.05 mm (Fig. 7b,d). Stimulation with blue light induced significantly greater constriction of the pupil to a diameter of 0.56 ± 0.03 mm, compared with stimulation with red light (Fig. 7c,d; \(P < 0.001 \), paired \(t \)-test). The pupil

![Figure 4](image_url)

Figure 4. Effect of age on pattern ERG responses in healthy mice. (a–d) There was no statistically significant difference in amplitudes (a, N35-P50 amplitude; b, P50-N95 amplitude) and latencies (c, N35-P50 latency; d, P50-N95 latency) between 3, 11, and 15-month-old mice.

![Figure 5](image_url)

Figure 5. Spectral properties of visual pigments in mice. Mouse retina has following visual pigments: rod opsin (\(\lambda_{\text{max}} \) at 498 nm), and two cone opsins (the UV cones with \(\lambda_{\text{max}} \) at 360 nm and the green cones with \(\lambda_{\text{max}} \) at 508 nm). In addition to these photoreceptor pigments, a specific subset of ganglion cells (intrinsically photosensitive retinal ganglion cells = ipRGC) contains the photopigment melanopsin, which has \(\lambda_{\text{max}} \) at 479 nm. Therefore, when red light of 620–630 nm wavelength is used as a stimulus, only the green cones and rods are activated. However, when blue light of wavelength 480 nm is directed on the retina, all retinal photopigments (with exception of UV cones) are activated. This difference in spectral properties can be utilized to identify functional deficits in specific cell types within the retina (Figure modified from Lucas, Douglas et al. 2001).
constricted by 44.3 ± 3.3% (mean ± SEM) of the baseline value with red light stimulus, and the pupil constricted by 71.8 ± 1.9% of the baseline value with blue light stimulus.

Optical coherence tomography
Spectral-domain OCT was used to noninvasively analyze the RNFL and total retinal thickness in vivo. Spectral-domain optical coherence tomography analysis revealed a total retinal thickness of 229.5 ± 1.7 μm (Figs 8a,9a; mean ± SEM) in the area centralis of healthy mouse eyes. The photoreceptor layer thickness was 83.8 ± 0.7 μm, with RNFL thickness of 29 ± 0.5 μm in the region of the retina that corresponds to the area centralis (Figs 8a,9a). The thickness of the RNFL using circular scans and automated segmentation protocols was 46.7 ± 0.9 μm (temporal), 46.1 ± 0.9 μm (superior), 45.8 ± 0.9 μm (nasal), and 48.4 ± 1 μm (inferior) (Figs 8,9). The thickness of the RNFL did not vary between quadrants (P = 0.1, ANOVA with Bonferroni’s post test). Analysis of RNFL thickness by excluding blood vessels thickness from the calculation was 22.8 ± 0.6 μm (temporal), 24.4 ± 0.5 μm (superior), 24.3 ± 0.6 μm (nasal), and 23.6 ± 0.8 μm (inferior) (Figs 8b,9c). The thickness of the RNFL did not vary between quadrants (P = 0.2, ANOVA with Bonferroni’s post test). Exclusion of blood vessels from the analysis resulted in significantly decreased RNFL thickness for all tested quadrants when compared to values obtained with inclusion of blood vessels: temporal (P < 0.0001, paired t-test), superior (P < 0.0001), nasal (P < 0.0001), and inferior quadrant (P < 0.0001).

DISCUSSION
Repeated measurements of RGC structural and functional parameters are essential for following temporal disease progression or treatment effectiveness in different models of retina and optic nerve diseases. In this study, we have characterized the normative values for healthy adult C57BL/6 mice using pERG, chromatic pupillography and OCT.
Pattern electroretinography has been successfully used in a rodent model of hereditary glaucoma (DBA/2J) to detect RGC deficits. The baseline values reported for young DBA/2J mice prior to loss of RGCs were 8.15 ± 0.4 μV, which are similar to values obtained from adult healthy mice in our study. Repeatability is particularly important if pERG is to be used as a longitudinal tool to monitor RGC function for comparative purposes during disease progression or treatment effectiveness in the same animal. We have demonstrated that pERG recordings did not have significant inter-session differences from baseline in our experimental conditions. The lateral eye position of rodents necessitates recording either one eye at a time or using two different stimulus monitors simultaneously; in our study, we have recorded one eye at a time using a single stimulus monitor, similar to previously published studies. The experimental setup that we used did not result in a significant interocular difference of pERG amplitudes or implicit times between right and left eyes, providing an opportunity to effectively monitor temporal RGC function in each eye. Furthermore, we have demonstrated that the RGC function does not vary significantly as mice age from 3 to 15 months. The pERG amplitudes and latencies at 11 and 15 months of age did not change significantly from earlier recordings on the same mice at 3 months of age.

The PLR is an objective measure of retina and optic nerve function. The PLR has been used to monitor functional deficits caused by retina and optic nerve diseases in laboratory animals. Recently, chromatic PLR analysis has been used in clinical settings in humans and dogs to monitor the rod-cone-mediated and melanopsin-mediated PLR responses. White light has been traditionally used for PLR analysis both clinically and experimentally. As white light is a mixture of wavelengths of the visible spectrum (including red and blue), differentiation of rod-cone and ipRGC-mediated PLR activity cannot effectively be achieved with white light stimuli. As previously shown in healthy dogs, we have demonstrated that red light causes significantly less pupil constriction when compared to the blue light stimulation in healthy mouse eyes. As blue light of 480 nm wavelength can activate all visual pigments in the mouse retina except the UV cone opsin, this type of stimulus provides the most robust activation of the PLR response. Based on the spectral properties of photosensitive pigments in mice, the red light (630 nm) can activate rhodopsin and M cones, but not UV cones and the intrinsic photosensitive pigment melanopsin, which provides an opportunity for the specific evaluation of rod-cone-mediated functional properties by measuring the red light-mediated PLR responses. It has been previously shown that the ipRGCs project to midbrain structures and can mediate PLR activity and photopic blink response even in the complete absence of rod-cone input. Furthermore, a subset of ipRGCs project to the region of the lateral

Figure 8. Optical coherence tomography. (a) Retina linear scans were used to evaluate the total retinal thickness and to calculate the thickness of the outer nuclear layer (photoreceptor bodies) and the RNFL in the superior retina (area centralis region). (b) Peripapillary scans were used to determine the RNFL thickness in the temporal, superior, nasal, and inferior retinal quadrants. Area of blood vessels is demarcated with dashed circles. (c) Fundus image of a mouse eye demonstrating area of the circular scan (gray circle). RNFL = retinal nerve fiber layer; IPL = inner plexiform layer; INL = inner nuclear layer; ONL = outer nuclear layer.
geniculate nucleus (LGN) and can mediate irradiance dependent firing rates of almost 40% of neurons in the LGN.65 While the small number of ipRGCs in the mammalian retina does not suggest a primary role of ipRGCs in visual processing, a recent study has demonstrated that rod and cone deficient mice can still effectively recognize pattern gratings in a visual maze test using only melanopsin-mediated light processing.66 Because the peak of melanopsin activation occurs near 480 nm (blue light)62 and melanopsin cannot be activated by red light (630 nm), red light-based routines for evaluation of PLR can be effectively used to evaluate the status of RGC dendritic synaptic connections in cases where the rod and cone electrical activity is completely normal. A defect in the red light pupil response (rod-cone-mediated signaling to ipRGCs) coupled with a normal blue light pupil response (suggestive of the normal ipRGC function) and normal scotopic and photopic ERG responses could be potentially indicative of a dysfunction in the RGC dendritic network. Chromatic PLR evaluation could be used for monitoring early retinal functional deficits in transgenic mouse models, or as an objective test for evaluation of the retina and RGC function as a result of experimental therapeutic treatments. Defects of the pupillary light reflex after illumination with the red and blue light in the presence of normal scotopic and photopic ERG responses would indicate a problem with the ipRGC soma, axons, or higher processing areas of the brain (pretectum) or more distal nerve or iris muscle deficits. Considering that rod-cone-mediated pupil input has to converge to ipRGCs that have large diameter axons, compressive optic nerve lesions and inflammatory optic nerve conditions theoretically could selectively impair this cell population resulting in decreased or absent PLR response while still sparing majority (or some) of smaller diameter RGCs resulting in the presence of some functional vision (Grozdanic et al., ACVO Abstract, San Antonio, TX, 2006). However, a majority of clinical and experimental conditions that we have evaluated during the last 5 years using chromatic PLR testing in different animal species are frequently characterized by an intact ipRGC-mediated response to blue light illumination—even in cases where complete blindness based on visual behavior is already present.14

While pERG and PLR are functional monitoring techniques that can detect functional deficits before any structural retina or RNFL changes occur, observation of structural retina parameters remains a very frequently utilized measure of therapeutic outcome in animal models of ophthalmic diseases. Spectral-domain OCT is a tool that has been extensively used to diagnose and monitor diseases of the eye and retina including glaucoma,67 retinitis pigmentosa,68 and macular degeneration.69 Measurements of macular volume70 and RNFL thickness71 using OCT have also been used to estimate overall neuronal loss in patients with multiple sclerosis, while one recent clinical study has demonstrated inner retina thinning in patients with idiopathic Parkinson’s disease.72 Considering the diversity of transgenic mouse models for ophthalmic and neurodegenerative diseases, it is likely that SD-OCT imaging will become a useful technique for evaluation of structural optic nerve properties in many different animal disease models. Similar to recently published results with the use of adaptive optics and 78D lens,73 we have demonstrated that by using a 25-diopter lens, high quality OCT scans of the mouse retina can be obtained. It has been previously demonstrated that automated RNFL analysis routines overestimate RNFL thickness because of the inclusion of blood vessels in the RNFL thickness calculation.74 We have also demonstrated a substantial increase in the RNFL thickness when blood vessels were included in the calculation. As blood vessels are predominately embedded within the RNFL in a majority of animal species, a subtle increase or decrease in RNFL thickness could be potentially masked by change in the blood vessel diameter because of the overwhelming contribution of the blood vessels to the RNFL thickness calculations with conventional SD-OCT software.

There are several limitations which can decrease the effective use of the cPLR and SD-OCT responses for evaluation...
of the retina and optic nerve status. Mice with severe forms of iris atrophy or prominent intraocular inflammation can have significantly attenuated PLR responses, while the application of topical ocular medications with miotic or mydriatic action can also have a significant effect on the resting pupil diameter and overall pupil motility. Furthermore, CNS and peripheral nerve abnormalities, which can be frequently present in different transgenic mouse models affecting any of the subthalamic PLR centers or efferent PLR pathway components, can have significant effects on the quality of PLR responses, which may be a potentially limiting factor during cPLR testing routines. Similarly, limitations in pupil dilatation may have the potential effect on the quality of SD-OCT imaging. Presently, we are developing automated OCT segmentation software routines that are specific for mouse retina which are likely to improve further the application of OCT in mouse species.

Detailed in vivo analysis of functional and structural retina and RGC parameters can provide a significant advantage during evaluation of transgenic animal models of human ocular and neurodegenerative diseases. Introduction of these techniques may result in a significant acceleration developing new therapeutic strategies, because all observed techniques are commonly utilized in human patients, which may allow for a rapid translation of animal study results to human patient population. Considering that the mouse is probably the most frequent experimental animal species encountered by veterinary ophthalmologists during toxicity and clinical safety/efficacy studies, the availability of normative pERG, chromatic PLR, and OCT data may provide useful information for more specific evaluation of functional and structural retinal properties in this particular animal species.

ACKNOWLEDGMENTS

This work was supported by the Department of Veterans Affairs Center for Prevention and Treatment of Vision Loss (CPTVL), VA RRD Grants C3919R and C4702R, Iowa Center for Advanced Neurotoxicology (ICAN), and the NIH (1R01EY019294).

REFERENCES

