Fig. S1. Reported angle for motion in the x-y plane and when motion components are held constant. (A and B) Reported angle as a function of presented angle when movement was in the x-y rather than x-z plane (n = 5) and (B) when the noise mask was presented for x-y trajectories (n = 3). Error bars represent SEM. (C and D) Reported angle for a range of trajectories where the magnitude of the \(V_x \) motion component (C) or \(V_z \) motion component (D) was fixed (n = 6). Error bars represent SEM. (E and F) Results from one observer (subject 1, Fig. 2) when (E) the \(V_x \) component and (F) the \(V_z \) component was fixed across a range of trajectories. Error bars represent SEM.
Reported trajectory when looming signals included

![Graph showing the relationship between the presented and reported angles.](image)

Fig. S2. Data obtained when observers \((n = 10)\) indicated perceived trajectory angle when looming signals were included in the stimulus. It is apparent that bias is present and observers deviate from the \(x = y\) line.
Fig. S3. Data obtained when observers ($n = 3$) indicated perceived trajectory angle when they used their left (left-facing filled triangles) or right (right-facing open triangles) hand to move the pointing device. It is apparent that there is a vertical shift depending on the hand that was used.